Posted on

UTFORSK MÅNEN

Månen på himmelen vil nok ikke overraske noen. Men man kan utforske den litt mer! Hva skjer med den? Hvordan endres formen og hvorfor? Det barna oppdager på egenhånd, husker de mye bedre.

„Jager etter månen“

Vi kan planlegge regelmessige ekspedisjoner med barna for å observere månen. Det er en flott mulighet til å komme seg ut og ha noen eventyr. Men noen ganger er det nok bare å gå foran skolen eller se ut av vinduet. Barna kan tegne månens form i arbeidsarket (nedlastbart) og på slutten kan de se hvordan den endret seg under observasjonen.

Modell av sola, jorda og månen

For bedre å forstå hvorfor månen ser ut til å endre form, kan vi lage en liten modell av solen, jorden og månen. Vi plasserer en lyskilde i stedet for solen,
flytter månen rundt jorden og observerer hvilken del av månen som for øyeblikket er opplyst og hva vi ville se fra jorden.

Månen i hovedrollen

La oss ha det gøy med månen! La elevene finne på og ta interessante eller morsomme bilder med ulike rekvisitter og månen. Man kan belyse objektet i forgrunnen, for eksempel med en lommelykt. På slutten kan vi vise de resulterende bildene i klassen og ha det gøy med fantasien deres.

Posted on

STERK IS

isvolum sammenlignet med vannvolum


Vi trenger:

  • forskjellige beholdere (bokser, flasker, krukker…)
  • vann
  • salt (ikke nødvendig)
  • arbeidsarket (nedlastbart)

I forsøket skal elevene undersøke hvordan vannvolumet endres når det fryser. I nærheten av skolen (eller kanskje rett utenfor vinduet) lar vi forskjellige beholdere (bokser, flasker, krukker…) med vann stå ute i kulden. Elevene prøver å gjette hva som vil skje med vannet og beholderen. Til slutt skal de se etter sammenhenger i hverdagen.

Barna kan jobbe selvstendig eller i grupper. Hver gruppe klargjør en beholder ute. Så går vi tilbake til varmen og barna fyller ut arbeidsarkene:

Dagen etter går vi ut for å undersøke hva som skjedde.

Vi diskuterer resultatene: Hva skjedde med vannet da det frøs? Hva skjedde med beholderen? Var det noen forskjell avhengig av formen på beholderen? Ble gjetningene våre bekreftet? Hva fant vi ut? Hva overrasket oss? Møter vi dette fenomenet (at is har større volum enn flytende vann) i livene våre? Hva kan dette forårsake? (F.eks. sprengt vannrør, steinerosjon…)

Vi kan inkludere f.eks.:

  • en beholder som er bredere på toppen enn på bunnen (f.eks. et yoghurtbeger), fylt til randen (isen vil “klatre” ut av beholderen)
  • en gjennomsiktig beholder hvor vi markerer vannstanden med et merke (isen stiger over merket)
  • en helt fylt plastflaske (flasken vil sannsynligvis “bule ut” et sted)
  • muligens inkludere et nytt forsøk: en beholder med saltvann (den fryser sannsynligvis ikke, eller fryser senere)
  • vi kan la elevene komme med egne ideer
  • Hvis vi tør, er det interessant å la en helt fylt og lukket glassbeholder stå ute i kulden – for eksempel et lukket syltetøyglass eller en vinflaske. Isen er så sterk at den skyver lokket eller river flasken over ende. Se opp for skårene!

Til slutt kan vi ta beholderne med is med til skolen for å varme dem opp og observere hvordan isen smelter. Hvor lang tid vil det ta? Hvor smelter det først?

Posted on

UTFORSK PLANTER

Arbeidsark inneholder ulike aktiviteter og ideer for å utforske planter. Dere tar arket med deg på tur, og når du finner planten, kan barna fullføre oppgavene.

Fag: natur, litt norsk, litt matematikk
Ca. 2.-4. trinn

OBS: Du finner kanskje ikke akkurat den typen plante som står på arbeidsarket. Det er helt greit! De fleste aktivitetene vil også virke med en annen plante fra samme plantefamilie. Og det er alltid interessant å sammenligne beslektede planter.

UTFORSK PLANTER: alle plantene

Posted on

EGGSPERIMENTER

4 PÅSKEFORSØK – fysikk med egg

La oss gjøre EGGsperimenter! Yngre barna kan gjette hvordan eksperimentene ender opp. For eldre kan vi legge til en mer detaljert forklaring av fysiske regler.

Balanserte påskeegg

Vi trenger:

  • en rett, ca 50 cm lang pinne, som vi knytter en tråd på i midten og henger opp, for eksempel fra et tre
  • 3-4 blåste egg (umalte går også bra), som vi trer en snor eller tråd gjennom, slik at det er mulig å henge dem på pinnen. Det er praktisk å knytte en liten strikk i enden av alle trådene, som vi deretter fester til pinnen (vi vikler den rundt pinnen flere ganger) – om vi må bytte hengested, vil  strikken flytte seg lettere langs pinnen enn tråden

Vi henger ett egg i hver ende av pinnen slik at det er i balanse. Så skal vi prøve å henge opp ett egg til i den ene enden. Hvor må vi da flytte eggene slik at pinnen blir vannrett? Og hva med de tre eggene i den ene enden? Langs hvilken del av pinnen flyttet vi eggene?

En slik hengende vekt er faktisk et eksempel på en toarmet vektstang. For å være i balanse, må en dobbelt så tung vekt henge i halv avstand fra rotasjonsaksen, en tre ganger tyngre vekt må henge på en tredjedel av avstanden, og så videre.

Newtons vugge

Vi trenger:

  • en rett, ca 50 cm lang pinne,
  • 3 eller flere blåste egg på tråder

Vi henger eggene på en pinne i lik avstand ved siden av hverandre. Så løfter vi ett av eggene og slipper det. Hva vil skje?
Denne Newtons vuggen viser loven om bevaring av momentum. Bevegelsesenergien i det egget vi slipper overføres til det siste egget på den andre siden. De midterste eggene forblir ubevegelige.

Uknuselig egg

Vi trenger:

  • en flat og hard overflate (jord),
  • en murstein eller lignende (tung) ting
  • 8 eller flere halve  eggeskall. Det er enkelt å få til: under matlaging hugges egget i to med en skarp kniv. Vask de halve skallene, la dem tørke og lagre dem. Det er greit å ha kantene så rette som mulig.
  • (et rått egg)

Vi spør barna om de vet hvor mye mursteinen veier (eller en annen tung ting vi har). La oss forklare eksperimentet for barna: Vi legger fire skall på en flat overflate med den avrundede enden opp. Så legger vi mursteinen på dem. Vil skallene holde, eller vil de knuse? Vi lar barna gjette og begrunne hvorfor. Da prøver vi. Hva skjedde? La oss prøve den andre varianten: vi plasserer skallene med de avrundede endene ned. La barna gjette igjen. Hva skjedde nå?

Vi kan også prøve en annen variant av eksperimentet: Vi tar et uskadet rått egg i håndflaten og legger hånden i en plastpose. Vi skal prøve å knuse egget i nevene våre. Stort sett går det ikke.

Hvordan kan en liten kylling komme seg ut av egget hvis skallet er så sterkt? Prøv å banke på skallet med tuppen av en blyant, først fra utsiden. Skallet er overraskende sterkt, selv om det er så tynt. Men når vi tapper fra innsiden, går det fort i stykker. Et lite kyllingnebb er nok.
På grunn av eggets form fordeles kraften jevnt over hele overflaten. De halve av skallene (i eksperimentet med mursteinen) er et eksempel på et hvelv (tenk deg for eksempel kuppelen til et kapell) – kraften fordeles gjennom buen vinkelrett på overflaten. Det fungerer bare hvis skallets vegger hviler vertikalt. Når skallene er opp ned, fungerer de selvfølgelig ikke som et hvelv. Kjenner barn til eksempler på hvelv?

Spinner det eller ikke?

Vi trenger:

  • et rått egg, et kokt egg og et blåst egg

Vi gir barna et kokt og et rått egg. Klarer de å vite hva som er hva? Svaret får vi ved et enkelt eksperiment: vi snurrer egget på en flat overflate. Hvilket spinner og hvilket spinner ikke? Og hvorfor?

I et rått egg beveger plommen (som er tykkere) seg og avbryter rotasjonen når den prøver å spinne. Plommen beveger seg ikke i det kokte egget. Og hva med et blåst egg? Vi lar barna komme med antakelser og begrunnelser, og så prøver vi.